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I Introduction

In this contract we have first investigated a phenomenological approach to a chaos dynamical

analysis at the free sheered atmosphere. We have then turned to a theoretical phase in which

we have developed a novel expansion of the equations for the free sheared atmosphere which

hinge on properties of hermite polynomials and the gaussian function. In this final scientific

report we give the conditions for the basic expansions used during our analysis to converge.

More specifically, the necessary and sufficient conditions are given for the quasianalytic

function classes D({Mk}) and the corresponding classes of distributions D'({Mk}) to be

invariant with respect to the complex-time diffusion group

cc Z k 02k
U,, = E T1 Oj~k, x E R1, z E C.

k=O

In addition, the properties of hyperdistributions

1'= akS.j
k=O

are studied. It is shown that hyperdistributions are characterized by the behavior of their

moments

14(r) =

We conclude that expansions based on hermite polynomials multipied by a gaussian have

a proper limiting behaviour. The objective to give complete mathematical foundations for

our analysis has been accomplished.
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2 Mathematical Framework

Many physical processes have diffusive character: the spreading of smoke in air, the behav-

ior of the temperature in a material body, and the vorticity in a fluid flow are examples

illur'trating this feature. The engineer's notion of blurring and filtering have similar nature.

The one-dimensional diffusion processes are governed by the heat equation

a z E R1,t>O. (1)at Oz2

In order to determine the behavior of the physical quantity T under consideration, provided

its initial value

T (X,0) = z xE R11 (2)

is given, we have to solve the Cauchy problem (1) - (2) for the heat equation.

It is well-known that the solution of the Cauchy problem (1) - (2) with appropriately

chosen initial condition Wo is given by Poisson's formula

•(X, t) f py)e-' !-dy, zxER1,t>O. (3)

The following interpretation of formula (3) is possible. We get the solution lk(x, t) as a result

of filtering the given data V through a Gassian filter of width v/t.

Suppose we would like to reverse the process of filtering. This is important, for example,

when we are concerned with the problem of reconstructing sharp images from degraded

pictures. It is clear that the inverse filtering is described by the inverse heat equation

at _ 2t E R 1,t > 0. (4)

at Oz2
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It is possible to incorporate the heat equation (1), the inverse heat equation (4), and the

Schr~dinger equation

Q (XZ t) z E R,t E R1 .at OX2

which describes the one-dimensional motion of a free particle in quantum mechanics, into

the so-called complex-time diffusion equation

a C, , Z' ) a 2j( X,, Z)
OZ 8z2  x E R',zE C. (5)

Consider now the following formal semi-group of operators

t t t>0 (6)

(the diffusion semi-group). It can be easily seen (6] that the formula

1P(X,t) = Vt(x), x C- R1, t > 0

defines the formal solution of the Cauchy problem (1) - (2).

Using the Taylor expansion of the function etu, u E R1 in (6), we can represent {JUt} as a

semi-group of differential operators of infinite order

cctk 0 2k

U, = 0 k a2, t > o. (7)
k=O

If we put a complex number z E C instead of t in (7), we obtain the complex-time

diffusion group of operators

ooC. (8)E,= k! ,az~k' z .()
k=O

The group {U,} provides a formal solution of the complex-time diffusion equation (5). More-

over, it is a formal analytic continuation of the semi-group (7). We use the word "formal" in

3



considerations above, because we have not yet defined the domain of the operators U, given

by (8).

Suppose {Mk} is a sequence of positive numbers. Define a function class D({Mk}) on

RI by the following formula

D({Mk}) = { E C-(R'): k(P(k)(X)t •5 AhkMk, k > 0,z E R'

where positive constants A and h depend on ýp. These classes are important in making the

formal considerations above precise.

Perhaps, Hadamard [4], [5] was one of the first who understood the importance of classes,

defined by given upper bounds for the successive derivatives of functions, in dealing with the

Cauchy problem for the heat equation.

Hadamard posed in [4] the problem of characterizing those classes D({Mk }), for which

every function w E D({Mk}) can be uniquely determined by the sequence So(k)(z 0 ), k > 0 for

any given x E R1. Such classes D({Mk}) are called the quasianalytic classes. Hadamard's

problem has been solved by Denjoy and Carleman (see Section 2 below, where we formulate

the Denjoy-Carleman Theorem).

The classes D({Mk}) have become useful tools in complex analysis [8], [10] - [11], in the

theory of distributions [2], [13], and in the theory of differential operators of infinite order

[1]. The simple example of their usefulness in the Cauchy problem for the heat equation is

given by the following. For an appropriately chosen class D({Mk}), the functions

0tk 92k(WW) t> 0

Utio(z)= E k 2k

are defined for every function (P E D({Mk }) and

Uj'P(X) = '(ot), T E Rlit > 0,

4



where T is given by (3).

An important contribution to the application of the quasianalytic classes in the theory

of partial differential equations is due to Gelfand and Shilov [2], [3]. They contributed sub-

stantially to the theory of distributions over quasianalytic classes and to the uniqueness and

well-posedness problems for the heat equation with complex diffusion coefficient a, namely

n (X, t) -a 9
2

q(Z'Rt) xER 1 ,aEC.

at (Z2

Gelfland and Shilov found in [2] the classes of generalized distributions which provide solu-

tions to these problems.

They wrote in [2]: "Applications of these spaces to the Cauchy problem in Vol. 3 will

illustrate the well-known statement of Hadamard's on the relation between uniqueness theo-

rems in the Cauchy problem on the one hand, and the theory of quasianalytic functions and

the general theory of functions of a complex variable, on the other."

One of the problems we consider in this work is to characterize those classes D({Mk}),

which are invariant with respect to the complex-time diffusion group (8), which means that

U.(D({Mk})) C D({Mk}), z E C.

We answer this question in Section 5. The U1-invariance of D({Mk}) implies that we can

diffuse, anti-diffuse, disperse, and anti-disperse1 , staying in the same class.

It is easy to see that the operator U, in (8) is a convolution operator, defined by the

formula

U.( = v * r.,

'Dispersion and anti-dispersion correspond to the Schr~dinger equation for the free particle.
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where r. is the Green's function for equation (5), namely

00£ Z k6 (2k)r 0 ,(9)
k=O k

The symbol 5o in (9) denotes the Dirac's delta function at 0.

The formal series, invloving all the derivatives of the delta-function, namely

r ak50), (10)
k=O

are called hyperdistributions. They are highly singular objects and Schwartz's theory of

distributions (see [9], [14], [2]) does not include them. The most appropriate theory, which

involves hyperdistributions, is that of the distributions over the classes D({Mk}) (see [2],

[3], [13]). In this theory the functions 1P E D({Mk}) are considered as test functions and

the distributions are defined as bounded linear functionals on the class D({Mk}), equipped

with appropriate topology. In [13] the formal series (10) were considered as distributions

over non-quasianalysitc classes D({Mk•}) (see [13], p. 51).

Hyperdistributions are of much use in image processing (see [6], [7]). They have been

used for deblurring and compressing of images. This is easy to understand if we recall that

a hyperdistribution

r,~ = E (.-t1 6 (2 k) >0

k=O 
0(

is the Green's function for the inverse heat equation and thus we may reconstruct sharp

images from damaged ones by convolving them wi.th hyperdistributions (11).

This paper is organized as follows: In Section 3 the necessary definitions and known re-

sults are gathered. Section 4 is concerned with the structure of hyperdistributions. We prove

(see Theorems 3 and 4) that, roughly speaking, the hyperdistributions are distributions over

classes D({Mk}), which have moments of all orders, and their moments should satisfy special

6



conditions. In Section 5 we give a characterization of the Us-invariant classes D({Mk}) and

the U, invariant cldstes of distributions D'({Mk}) (see Theorems 5 and 6). As the corollary

of Theorem 5 we get the following result. The quasianalytic classes D({kf 1), 0 < < 1

are '..-invariant, while the class D({kk/ 2 }) is not (see Corollaries 2 and 3).

3 Definitions and Notation

Definition 1 (see [8],[11],[12). Suppose {Mk} is a sequence of positive numbers. We say

that an infinitely differentiable function 4) on the real line belongs to the class D({M'k}) if

there exist positive constants AO and hO, depending on 4, such that the following estimates

hold for the successive derivatives O(M) of the function 4,

I€k) (X) 1 <5 A~h"Mk, , x E R'.

Definition 2 (see [8]j,[11],412]). The class D({Mk}) is called quasianalytic if

4 E D({Mk}), 0(k)(xo) = 0 for some xo E R' and all k > 0 ==* 4 - 0, (12)

while all the classes D({AMk}), which does not satisfy the quasianalyticity condition (12) are

called non-quasianalytic.

It is easy to see that classes D({Mk}) are linear and dilation-invariant. The quasianalytic

classes D({Mk}) cannot contain functions with compact support.

Definition 3 (see [13]). In this definition we equip the class D({Mk}) with the locally

convex topology. First we consider linear subclasses,

Dm({Mk}) = {O E D({Mkj}): l4(k)(x)i < AomkMk, k > 0},m > 1

7



of D({Mk}). Each of the classes D({ Mk}) is a Banach space with the norm defined by

Pm(M) = sup sup
zER t k>o M k rnk "

It is clear that

D({Mk}) = UDr({Mk}).
m

We equip D({Mk}) with the inductive limit topology with respect to the family of its subspaces

D,.({lk }), m > 1 (see [12] for the definition of the inductive limit).

Definition 4 (see [13]). The space D'({Mk}) of all bounded linear functionals on the locally

compact space D({Mk}), equipped with the strong topology (see [12]), will be called the space

of distributions over the class D({Mk}).

It is not difficult to prove that every band-limited function 0 E L2(R1 ) belongs to the

class D({Mk}) with Mk = 1, k > 0. The band-limitedness means that the support of the

Fourier transform of 4 is bounded. One more example is given by the Gaussian O(x) = e-T2

which belongs to the class D({kk/ 2 }). In the book by Mandelbrojt [11] (see p. 89) there are

examples of functions 4 E D({Mk }), which do not belong to any proper subclass D({M, })

of D({Mk}).

Our next goal is to introduce new classes D!({Mk}), which contain D({ Mk}) and all the

polynomials.

Definition 5 For given sequence { Mk} consider a class D({ Mk}) of infinitely differentiable

functions 4 on the real line such that there exists a constant he, depending only on 4?, and

for every finite interval I C R1 there exists a constant A1,0, depending on I and 4, for which

I0(k)(x)l •_ A1,0h Mk , x E I, k > 0.

8



Definition 6 We introduce the locally convex topology of the class D)({Mk}) in the following

way. Consider linear subspaces

Dm({Miv}) = ,[S E D({Mk}) : p',.(') = sup sup 4 <()(z) < , IC R'}. (13)
xEI k>'-) mkMR

The family of semi-norms pt,,m generates the Frechet space topology on D({Mk}). It is clear

that

D({Mk}) = Ub,.,({M}).

We equip D({Mk}) with the inductive limit topology with respect to the family of its linear

subspaces {bD..({Mk})}, m > 1 (see [12] for the definition of the inductive limit).

Suppose r' is a bounded linear functional on the space D({Mk}). The next definition

introduces the moments of such functionals.

Definition 7 For the functional r as above, the numbers

1Lk(r) = k) , k > 0 (14)

are called the moments of r.

It is clear that D({Mk}) C D({Mk}). Thus, every bounded linear functional r on

D({MkJ) belongs to the space D'({Mk}).

Definition 8 The space D'({Mk}) of all bounded linear functionals on the locally convex

space D({Mk}), equipped with the strong topology (see [12]), will be called the space of dis-

tributions over the class D({Mk}), which have moments.

9



The quasianalyticity property of the class D({Mk}) depends on the behavior of the

Ostrovski function
rk

T(r)=sup r r>Ok>0 Mk '

(see [8]). For every sequence {Mk}, the new sequence {Mk}, defined by

In Mk = sup(k In r - In T(r)), (15)
r>O

is called the convex logarithmic regularization of the sequence {Mk}. The sequence {ln Mk}

is the largest convex sequence, minorizing the sequence {ln Mk}. If the initial sequence {Mk}

is logarithmically convex, namely if

Mk <_ MkMk+l, k >+ 1

then Mk = Mk, K > 0.

The main result in the theory of quasianalytic classes is called the Denjoy-Carleman

theorem (see [8]).

Theorem 1 (Denjoy-Carleman) The following conditions are equivalent:

1. The class D({Mk}) is quasianalytic.

2.

3.

4.

= 00E(-Mk)-I/k 00o.
k=O

10



The following theorem reduces the case of the general classes D({Mk}) to the case of

classes with logarithmically convex defining sequences.

Theorem 2 (Cartan-Gorny) ( see [8]) For every positive sequence {Mk} we have

D({Mkj}) = DC{M_•).

As we have already mentioned in the introduction, the formal infinite series,

r - E •6•

k=O

will be called hyperdistributions. We have (formally) the following formula for the moments

(14) of r:

pk(F) = (-1)kk!ak, k > 0 (16)

and the following moment representation for r:

E=O k! /k(T)8(k)k=0

In section 4 formulas (16) and (17) will be given exact meaning.

4 Characterization of hyperdistributions

The first result in this section provides conditions for a hyperdistribution

E= akwok (18)
k=O

to be a distribution, belonging to the class D'({Mk}).

11



Theorem 3 Suppose a hyperdistribution (18) and a sequence {Mk} are given. If

xIaklMkhk < 00 (19)
k=O

for every h > 0, then r E D'({Mk}) and

ak = (-1)kp~k(r)(k!)-1, kc > o. (20)

Remark 1 Theorem 1 sho•. that for a given sequence {Mk} all hyperdistributions (18),

satisfying condition (19), have moments /k(r) of all orders. Moreover,

I" k!r~ Mkh k < 0o (21)
k=O

for every h > 0 and the moment representation formula

r = E --1k, k (r) 6o~k) (22)
k=o0k

is true for r.

We now formulate the main result of this section. It will be shown that for some sequences

{Mk} the inverse to Theorem 3 holds.

The restriction for sequences {Mk} will be as follows: there exists a positive function

p(h), h > 0 and a positive sequence {Tn} such that

1.
00

E L.rj < 00
n=O

2.

Mn+,nh" < p(h)'+I(n!)-rM,,, ,rn > 0, n > 0, h > ho.

Then the following result holds.

12



Theorem 4 Suppose a sequence {Mk} satisfies the conditions above. Then every distribu-

tion r E D)'({Mk}) is a hperdistribution (18), for which (20), (21), and (22) hold.

Remark 2 The conditions 1)-2) above and the similar conditions in Section 4 are useful

in problems, which we consider in this paper. The conditions 1)-2) imply, on the one hand,

the differentiability condition for the classes D({Mk}), namely

Mk+1 : C Mk

with some c > 0. This condition is necessary and sufficient for the differentiation invariance

of the class D({Mk}) (see [13], p. 57). On the other hand, conditions 1)-2) above imply

hkMk(k!)-y -. 0 (23)

as k --+ oo for each h > 0. Condition (23) guarantees the convergence of Taylor series

0(x))(0)= , ED({Mk}) (24)

j=O

everywhere on the real line. This can be shown by estimating the Lagrange form of the

remainder of the series in (24). Similarly, all the Taylor series

O (j+k)(0) I
) -) Z •), k > 0, 0 E Db({Mk}) (25)

j=O

converge uniformly on all subintervals of R'.

Proof of Theorem 3. If a hyperdistribution (18) is given and if a function 4 belongs to

the class D({Mk}), then (19) implies the absolute convergence of the series

r(o) = E(-1)kao)(0).
k=O

13



Moreover, if I is any interval, for which 0 E I, we have

Ir(o)l < ,..•(o)E• aklM'Mk, M > 1, (26)
k=0

where the semi-norms Pi,m are defined in (13).

It follows from (26) that the functional r is bounded on the space D,({Mk}),m > 1.

Hence, it is bounded on the inductive limit D({Mk}) of the spaces D,({Mk}),m > 1 (see

112] for the properties of the inductive limits).

Formula (20) follows easily from the definition of the moments.

Theorem 3 is proved.

Proof of Theorem 4. We will need the following lemma.

Lemma 1 Suppose conditions 1)-2) hold for a sequence {Mk}. Then the Taylor series (24)

of a function 0 E D({Mk}) converges to 4 in the topology of the space D({Mk}).

Proof. Consider a sequence of remainders of the Taylor series of 4), namely

00 4(m)(O) x

Bj(y) = m. , j= E 0.

By Remark 2, the sequence Oj tends to 0 as j -o oo uniformly on every interval. Moreover,

we may differentiate k-times under the si'mmation sign (see (25) in Remark 2).

Differentiating k times, we get

k _ 4 '(+h)(0)m if k > j
cj)(2:)= _==o ,r+ko (27)EOOk0)4) { ( otherwise

It follows from the properties of inductive limits (see [12]) that Lemma 1 will be proved

if we show that there exists p > 1 such that 4) E Dp({Mk}) for j Ž .0 and

-,, ( - . (28)

14



as j --* oo for every interval I.

From (13) and (27) we get for z E I, k > j/2

i,+(),_ Mm+khE B7

m=0 7n M=0 n

Using 1) and 2), we obtain

I(<)(,)l _ AJ.0hkp(ho)k+lMk r TmBm' < -A!,qi-h4Mk, , k > j2, z E 1. (29)

m=O

In the case k < j/2, z E I we get

:5)() _< ,Ohkp(h.A)+l gk F, rmB- <_ a',,(h,'D~ g E rm',Br.
m:m>j/2 m:m>j/2

It follows from the previous inequality and from (29) that there exists a constant hk,

depending only on 4, and for every interval I C R1 there exists a constant A1,O, depending

on I and 0b, for which

p',p(OAj) = sup max{ sup [IOjk')l)pkMk)-i] sup [lMk))( 2)I~pkMk)-1I _
xEI k:k>j/2 k:k<j/2

Aj,,max{ sup [h'p-], sup [hi-k E rmBm]}. (30)
k:k>j/2 k<j2 m:m>j/2

Using (30), we show that for p > hO condition (28) is satisfied.

This proves Lemma 1.

Let us proceed with the proof of Theorem 4.

Suppose r E D'({Mk}). By Lemma 1, we get for every 4 E D({Mk})

0~ ) 0 ) 0k - (k) (0) k 40r0k
o •.Ilk /k(r)

)= k=O k=O "

Hence,

r = ..,)kk- •)o (31)
k=O

15



and r is a hyperdistribution.

To complete the proof of Theorem 4 we need only to show that

• lk(r)l k-kI Mkhk •<0, h >0.

Fix h > 0 and consider a function oih, given by the following infinite series:

h() = ign((r)) , x RI.
j=O

Our goal is to prove that

Oh E D({Mk}). (32)

If (32) is proved, then

r(Oh) = E (33)
j=O

and Theorem 4 will follow from (31) and (33).

We have
E hjklbJM

O - (X) i0 (34)
j=o

From conditions 1)-2) we obtain

Mj: c(j!)r3 Mo, j > 0

and (34) gives

10h(X <5 cMoE h'JjT'rj. (35)
j=O

Therefore, the series, defining obh, is uniformly convergent on intervals.

Similarly, the k-times differentiated series, namely

Ik(Z) = E -. sgn (Ij+k(r)) Mj+k (36)
j=0

is uniformly convergent on intervals. This can be shown as follows.

16



By conditions 1)-2) and by (36), we get

Irk(x)l • hkc"Mk E hizi'ri, (37)
j=O

which shows that the series in (36) converges uniformly.

Hence,

Ok)(X) = Ik(,), E R1 . (38)

Moreover, from (36), (37), and (38) we get

(k)(X)l _ Ath-Mk, k > 0, z E I

for every interval I.

This shows that 01h E b({Mk}), and hence the proof of Theorem 4 is completed.

The next lemma allows us to construct examples of sequences {Mk}, satisfying conditions

1)-2).

Lemma 2 Suppose

Mk - kK(k), k > 0, (39)

where n(u), u > 0 is a smooth increasing function on [0, oo), for which

K¢'(u)< 1- 6, , u>O0 (40)

for some e, 0 < e < 1. Then conditions 1)-2) hold for {Mk}.

Proof. It is clear that (40) implies

limsup r.(U) <1 (41)

IAýOO U

Denote

M(u) = u,•(u), u > 0. (42)

17



Then, by (39) and (42), we have M, = M(n), n > 0.

Now suppose

r(U) = U-bu, U > 0,

where

6 < e/2 (43)

is fixed. Then condition 1) with 7-n r(n), n > 0 is satisfied. As for condition 2), it is easy

to see that it follows from the inequality

M(QA\)/Ah, < p(h)A(C-1)(l-6 )(. - 1)("-.)(I-6)M(A)l/A, (44)

where A > 1, _ 1, h > h0, and M is defined in (42). Our goal will be to prove (44).

By (40), we get

S<- -A (45)

and denoting the left-hand side of (45) by ( 1(A,/p) and the right-hand side by 4 2(A,p), we

obtain

A4'(A'\) < A2(A•'A). (46)

It follows from (41) that

_.(-) < -, U > U0 . (47)
U

Since

lim (p-1)ln(p- 1)

there exists Po, satisfying

/to > U0, (48)

for which

1)>1-v, A>o. (49)
Aln1
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Here v is a positive number such that

1 - C + 6 < (1-- 6)(1 - v). (50)

The number v, satisfying (50), always exists, because, by (43), we have

1-e<+ < -6.

Suppose

S<h.

Then

hPA,1(p,.A) < O(h,;%) (51)

where

-(h,A) = h1l' + - (h'/6 A). (52)

Forh> hl, A > 1 we have

Ahl 6 > uo (53)

Thus, by (47), (52), and (53),

4(h, A) <_ hI/ 6 + 1/66hk/.

It follows from (51) that

"h1101(/A',.) < p(h), h > hl, (54)

where p is some positive function.

Now suppose

h _<u (55)
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Then Iso < h implies Io < and

So < A,. (56)

Since

(1A$

we have by (49),

g(1-)(-.)P _< (o_ 1)(1A6),1) / > Po. (57)

Now it follows from (55), (48), (56), and (47) that

h"A 4(A,.,) _< ,=(6+v.-C$..

Moreover, (50) and (57) give

h"AI(P'A) ( < - 1)(1-)•€.- (58)

From (54) and (58) we get

hWp*b('A) < p(h)(I- 1)(1-6)("-1), h.> max(hl,yo). (59)

Now it is sufficient to multiply the inequalities (46) and (59) and remember the definition

of 11, 42, and M. It is easy to see that we get (44) as the result.

Hence, inequality (44) holds and Lemma 2 is proved.

Corollary 1 Suppose

Mk=k~k, k>0,0<_7<l.

Then Theorem 4 is true for {Mk}.

Corollary 1 follows easily from Lemma 2 and Theorem 4.
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5 Classes D({Mk}) and the diffusion group

In this section we consider classes D({Mk}), satisfying the following condition:

lim I =Mk (60)
k-.o0 k

It is easy to see that if condition (60) holds then

lim InM-- ;
k--• k

where {M.k} is the logarithmic regularization of {Mk}, defined in (15).

The following theorem characterizes classes D({Mk}), which are invariant with respect

to the complex-time diffusion group
U.O() =oo Zk 2kX)

u,¢(1) = p x E.¢•() R1 , z E C.
k=O

Theorem 5 Let {Mk} be a sequence, satisfying (60). Then the following assertions are

equivalent.

a)

U.(D({Mk})) C D({Mk}), z E C.

b) There exists a positive function p(h), h > 0 such that

M2.+mhn < p(h)m+ln M__, m > 0, n > 0, h > h0 . (61)

c) There exist two positive functions M and p on [0, oo) such that

M(k) = Mk, k > 0

and the inequality

h.MC(A)'I/ < p(h)(ju - 1) A M(A)u/ (62)

holds for all A > 1, pi>2 1, and h > ho.
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Proof. We begin by showing that if there exists a positive function p such that

M 2n+mh" < p(h)'+n"M,,m, m > 0, n > 0, h > ho, (63)

then assertion a) holds.

Suppose (63) is true and let 0 E D({Mk}). Then

~ i 14 (2k+A)(X)j < Aoh h ŽL2k kj (4
k=O k- °(

Applying (63) with h = 2h 2z , we get

M= +j h 2klzl, < 2 -*k 2h 2 IzlY+'Mj. (65)
k! d

It follows from (64) and (65) that

= ! 0(2k+j)(X)

and

1[U4,(X)](J)j <_ c.,OhA, z E C, > 0,

which proves that (63) implies a). Using Cartan-Gorny Theorem (see Theorem 2 in Section

3, we conclude that a) follows from b).

Remark 3 Analyzing the previous part ot the proof of Theorem 3, we see that condition

(63) implies not only the validity of inclusion a), but also the continuity of the operators U.,

z > 0 on D({Mk}). Since the topologies of the classes D({Mk}) and D({M__}) coincide (see

the proof of Cartan-Gorny Theorem in [8]), the validity of condition b) in Theorem 3 implies

the continuity of UL on the class D({Mk}).
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The next step consists in proving that a) implies b). Appealing again to Cartan-Gorny

Theorem, we see that condition a) is equivalent to the condition

U.(D({A'})) c D({M_}), z E C. (66)

Therefore, we should prove that b) follows from (66).

The sequence {MM_,k} is logarithmically convex and hence convex. Without loss of gener-

ality we may suppose that Mlk increases and that M_ = 1. It is easy to see that for such

{_Mj• there always exists a smooth logarithmically convex increasing function M on [0, cc),

for which

AM(k)= Mk, k > 0 (67)

and
In M(u)_

lim = 0c. (68)

Now consider the following continuous version of the Ostrovski function (see Section 3)
ru

Tl(r) = sup•_(U r I > 0. (69)

Denote

W,.(,u) = ~u' ,"> o,,.> 1.

Since V(0) = 1 and equality (68) is true, we have

W,(O) = 1, lim•_.c W,(u) = 0.

Therefore, the continuous function Wr attains its maximum on [0, oo).

Denote

P(u) - nM_(u)

Since M is logarithmically convex, the function P increases.
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It is easy to see that the point uo = uo(r), at which the ma-x-imal value of W, is attained,

satisfies

P(uo(r)) = Ir.

Thus

uo(r) = P-'(lnr). (70)

It is clear that

T __r) r > 1. (71)
Al A1(uo (r))' .

After these prelimimary considerations we proceed with the proof of the implication

a) = b).

Suppose (66) holds. Define a function 0 by

w cos((k)) R, (72)•C•)= •EkT,T•Crk))' '
k=1

where

T(k) = eP(k), k > 1. (73)

Let us show that the series in (72) and all the m-times termwise differentiated series

converge absolutely.

Differentiating formally, we obtain

CO (74)

I¢,¢mkl _< E k2T (r(k)) (74)
k=J

From (67) and (69) it is clear that

fC7_Ck)) >, r(k)--- (75)
-M_.

for every k and n. Applying (75) with n = m to (74), we get

'M E k- 2, m > 0,

k=1
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which means that 0 E D({M_}).

Using (66), we obtain

U-h(O) E D({M__}),

and recalling the definition of the class D({Mk•}), we get

( _= o 2k.',O :! h(h)jM j, j >

with some positive functioa. ;6.

It is clear that

4 ) (2k+m)(o) = 0

for every odd integer m. In the case of the even integer m = 2j we get from (70), (71), and

(73) that

= (_ 1 )k+I T(m) 2k+ 2j M(-)k+j M _r(m) 2k+ 2j•Ck+J)0 :(-I _~ m t 2 TI(T(m7.)) - 1 k+ rfn2T(m)m (77)
M=1 MM=1 ()

It follows from (76) that

oohk 0 M-r(m))2 k+ 2j i78)

E :_M 2 m) :5 chp(IL 1 jf (78)k=O ! =1 ()

Taking into account only the term with m = 2k + 2j in the infinite sum on the left-hand

side of (78), we get

c h k M2k+21  > - hk M2 k+2 (

chp(h)'M•j • ! (2k + 2j) r-2  k! e4k+4j (79)k=O k=O

It is seen from (79) that assertion b) follows from (66) in the case of an even integer m.

The case of odd rn's can be treated similarly with only one difference that we take sines

instead of cosines in the definition (72) of the function 4).

We complete the proof of Theorem 3 by showing that b) is equivalent to c).
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Let us first prove that b) is equivalent to the existence of positive functions M and p

such that

M(k) = Mk, k > 0 (80)

and the inequality

M(2ý + v)h <_ p(h)`+WM(v) (81)

is true for all O, v > O, and h > ho.

It is clear that this assertion implies b). Now suppose b) holds. Consider the function

M, defined above in the previous part of the proof. Then inequality (80) holds and, using

(80) and (81), we get for h > ho

M(2ý + v)h' < M (2([4 + 1) + [v] + 1)h011+' < p(h)1 []+2 ([ý] + 1)[C]'M +, (82)

where [a] denotes the integer part of a.

It follows from (82) that

Mi(2ý + v)hc < ,(h)"+'ý+Mi . (83)

Taking n = 1, h = 1 in (61), we obtain

M_+ 2 < Cm+IM , m > 0. (84)

Now it is clear that (81) follows from (83) and (84). Therefore, (81) is equivalent to b).

Taking 4 = xv, 2n + 1 = p, and v = A in (81) and making simple transformations, we

show that (81) is equivalent to assertion c).

Theorem 5 is proved.
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Remark 4 In the first part of the proof of Theorem 5 we showed that condition (63) implies

the U, - invariance of the class D({Mk}). Moreover, we did not use condition (60) in this

part of the proof.

If we apply Theorem 3, we see that condition (63) for the sequence {Mk}, satisfying (60),

implies the similar condition (61) for the sequence {M_... The inverse assertion does not

hold, as it can be easily shown by simple ezamples. Hence, condition (61) is only suffisient

but not necessary for the U, -invariance of the class D({Mk}).

Corollary 2 Suppose

Mk = k-(k), k > 0,

where x is a smooth increasing function on (0, oo) such that

1.

lir sup 1/2.
2.</2 u--'*O U

,K'(u)<1/2, u 0.

Then the class D({Mk}) is U,-invariant.

Proof. It is sufficient to check tOat iuequality (62) with M(u) = u-(u) instead of M'(u)

holds. Then (63) will hold and the class D({Mk}) will be U.-invariant by Remark 4.

Condition 2) of Corollary 2 gives

It follows that

Ar,()A-) 2/ <2/A (85)
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From condition 1) we get
,n(u) < u,/2, u, >_ uo. (86)

Thus, there exists r > 0 such that

2<(_ ) + 1, u > uo. (87)
U

Fix any ý such that 2 _< r. Since

lir 6U - 1)=n(A- 1,1--00 it In IL

there exists

Ato > uo, (88)

for which
(1- >)l n> I L1 )

pl In li

Suppose

C <h.

Then

WAAf(X)2/A < ho(h,A),

where

( = +2 + 2 (h'/A). (89)

For h > ho, A > 1 we have

Ahl1C > uo. (90)

Thus, by (86) and (90),

2sup r.(hl•I4A) < 1. (91)
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It follows from (89) and (91) that

'(,A) VCh~ + l/~h11 c

and

h"p"(i•)2 1A < p(h), h > ho, (92)

where p is some positive function.

Now suppose

h _< li. (93)

Then h > ,14 implies u > po and

All > J/o. (94)

Since
(• -,U-1) =n ,-. ,

we have

(I,__ 1)'-1 Ž •~(1-ii PU > 10. (95)

It follows from (93), (94), (88), and (95) that

PA K(PuA) 2
/A <• ,•-fppuA)2/A < (l-r) < ,(-). < (1 - 1)I.-1. (96)

From (92) and (96) we get

h."A() 2/A < p(h)(p- 1)'-' (97)

for h > max(ho,4o).

Multiplying inequalities (85) and (97), taking the square roots of the products and re-

calling the definition of the function M in Corollary 2, we see that inequality (62) with M
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instead of M holds for all h > max(ho, Pi0)- As we have already mentioned above, this implies

the U,-invariance of the class D({Mk}).

Corollary 2 is established.

The next assertion follows from Corollary 2.

Corollary 3 Suppose

Mk=kk2 k>O,

where 0 < y < 1. Then the class D({Mk}) is U2-invariant.

Corollary 4 If

Mk = kk/ 2 I k>O,

then the class D({Mk}) is not U,-invariant.

Proof. Assume D({Mk}) is Ul-invariant. Then, by Theorem 5, the inequality (80) should

be true. We get in this case

(2n + M)n+m/ 2 h n p(h)m+lmm/2  (98)
n!

for all h > ho, n > 0, and m > 0. Since n" > n! and n < 2n + m, we get from (98)

(2n + m)m/ 2h n < p(h)"+imm/ 2.

Fixing m and allowing n to tend to infinity, we get a contradiction. Hence, the class

D({Mk}) is not U,.-invariant.

Corollary 4 is proved.

The next theorem is analogous to Theorem 5. It concerns the U,,-invariance of classes

D'({Mk}). The action of {UT} on D'({Mk}) is defined by

)()= r(U()), r E D'({Mk}), 0 E D({Mk}).
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Theorem 6 Let {Mk} be a sequence, satisfying (60). Then the validity of inclusion

U.(D'({Mk})) C D'({M•})

is equivalent to condition b) or condition c) in Theorem 5.

Theorem 6 follows easily from Theorem 5 and Remark 3.

6 Summary and Conclusions

The purpose of the research carried out under this contract is that of developing the

"Chaos Dynamics" approach to the free sheared atmosphere which parallels the successful

analysis carried out by Ed Lorenz on the Benard flow (which is a physical model of the

troposphere). The basic idea of the Chaos Dynamical analysis is that of (1) expanding the

fluid equations in terms of basis functions suited to the geometry and physics of the problem,

(2) truncate the expansion to the "lowest" post-linear terms (quadratic in Lorenz' work), (3)

deduce an iterative map appropriate to the (strange) attractor given by the truncated post-

linear dynamics(the Lorenz "mask" in the case of the Benard problem),and (4) calculate

the critical value of the parameter(s) that correspond to both the onset of instability (this

critical value can usually be reached by the linear theory) and, most important, to the onset

of chaos, which is interpreted as the onset of turbulence. In the case of the free sheared

atmosphere the relevant parameter is the Richardson number. Its critical values are at

the present not understood. The major portion of our calculations have been carried out

for the Taylor- Dyson atmosphere in which both the pressure and the density decrease ex-

ponentially with height above the ground and the horizontal shear is given by a Couette

flow. This model has'been analyzed with fourier analasis which fails to yield unstable
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modes even in the most refined fouins.Since the standard method fails to give insight into

the critical Richardson number, we study an alternative that utilizes modes with finite

energy from the start. Our methodology uses hermite polynomials for the infinite interval

(tapered by a gaussian) and Laguerre polynomials for the semi- infinite interval (tapered

by an exponential). Our expansion method also fails to reveal unstable modes, just like

the conventional method. A question of fundamental significance that arises is wether the

parameter (scale height) that tapers the polynomials requires such fine adjurment that

only a very special choice would correspond to the physical conditions envisioned. We have

established that this is not the case and we prove this fact below by showing that taking the

scale height to arbitrarily small values does not destroy the convergence of the expansion.

In fact the analysis given below establishes with mathematical rigor the validity of our

expansion method.
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